TORAL AUTOMORPHISMS , LINEAR RECURRENCES MODULO m , AND THE EUCLIDEANITY OF Q (

نویسنده

  • JOHN C. MILLER
چکیده

Elementary geometric properties of toral automorphisms give sufficient control over the distribution of residues modulo m of certain linear recurrences to give a new, noncomputational proof, that Q( √ 2 + √ 2) is a norm-Euclidean number field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Affinization of Segre products of partial linear spaces

Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...

متن کامل

CYCLIC CODES OF LENTH N OVER ( ) GF q q – CYCLOTOMIC COSETS MODULO N AND APPLICATION OF BURNSIDE ’ S LEMMA

The idea of q cyclotomic cosets modulo n due to carry Huffman and Vera pless is considered in the context of linear codes of length n over ( ) GF q where m q p  , p is a prime, 1 m  . An explicit formula for the number of q cyclostomes cosets modulo is obtained as an application of the classical Burnsides lemnra. The formula for the number of cyclic codes in   ( 1) n n q R F x x   is dedu...

متن کامل

Reversing Symmetry Groups of Cat Maps

Toral automorphisms are widely used (discrete) dynamical systems, the perhaps most prominent example (in 2D) being Arnold's cat map. Given such an automorphism M , its symmetries (i.e. all automorphisms that commute with M) and reversing symmetries (i.e. all automorphisms that conjugate M into its inverse) can be determined by means of number theoretic tools. Here, the case of Gl(2; Z Z) is pre...

متن کامل

M ar 2 00 3 POSITIVE VOICULESCU - BROWN ENTROPY IN NONCOMMUTATIVE TORAL AUTOMORPHISMS

We show that the Voiculescu-Brown entropy of a noncommutative toral automorphism arising from a matrix S ∈ GL(d,Z) is at least half the value of the topological entropy of the corresponding classical toral automorphism. We also obtain some information concerning the positivity of local Voiculescu-Brown entropy with respect to single unitaries. In particular we show that if S has no roots of uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012